Self Contained Encrypted Telnet

Nick Christenson,npc@ j p] , nasa gov
Telos Sys tems Group/Jet Propulsion La bora tory
Pasadcena, CA, USA

Abstract

The self contained encrypted telnet, ETN, presented here is designed to provide a
sce ure method of communication between two hosts talking over a potentially insccure
network. This package uses the Diffic Helliman key exchange algorithm[1] to negotiate a
schedule of 1)ES session keys, and uses these to enerypt the ertire dat a stream between
client and server. This systemn is simple to implement, requires no ongoing maintenance
and is transparent to the user.

Introduction

Over the past few years, the passive network sniffer has become aninercasingly popular
method of attacking legitimate computer account s[2]. 1t has become clear that more
sophisticated solutions are necessary to protect infor mation as it crosses potentially hostile
networks. One solution is the use of one-timme password schemes, like S/IK ey[3]. Another
solution is the increasing usc of cucryptionin protocols like Kerberos[4]. Yet another
solution is to usc a sceure method of passing the password 1)etween t he client and server
and then run a regular telnet session from then o, as is (lone in SRA tehiet[5]. A one
time password scheme solves the problem of cavesdroppers being a Hle to masquerade as a
legitimate user and log on to a system, but there are Severa problems they donot ?1(1(11 oss.
For one thing, an cavesdropper can still gain valuable information about the connection.
The username is still visible. The natures of other connections are still apparent. The
contents of the user’s session are not protected. Key distribution 1hased encryplion services,
like that of Ierberos, also do afine job of protecting users’ sessions. They have their
defi ciencies as well, however. “1'here is overhead to maintaining the services. There is a
heavy reliance on the robustness and integrity of the key server. Inter-realim communication
still requires some extra work. SRA telnet works well, but requires Secure RPC, docesn’t
protect passwords required by commmands bke su (1), doesn’t protect you if you connect
over multiple hops (like if you use a gateway) and uses Diffic H ellinan keys that may not
1)(: sufliciently sceure. These schemes solve t he problemns they address, but 1believe there
is aniche open for another solution.

Goals
‘1)11(goals of ETNarcas follows:

1 Be casy to build and install.

2. After installation, require zero maintenance time.

3. Have the operation be completely transparent to the user.

4. Require minimal startup time and provide aceeptable throughput, even
on slow hardware.

0. Provide complete protection against cavesdroppers attempting to

discover uscrname/password pairs or any other data connnunicated
over the nctwork during the conmection.

Protocol

Here’s how it works. The client, is given the none of the machineto which the user
wishes to conneet. The client requests a particular session key negotiation algorithm from
the server, which may concur or demand the adoption of a different algorithm. Currently,
512 bit Diffic Hellman with a client transmitted prime and generator, called DHA0512 in
the TN protocol, is the only one included, but it would be straightforward to add others.
In DHAO512, the client starts by sending the Diflic Helliman prime and generator to the
scrver, Then the client and server cach randomly generate public and private keys. After
they exchange public values, cach computes the agreed key based on the information they
know: their private value, the other mecmber’s public value, the session prime and the
session generator. The agreed key is transformed into a schedule of DES session keys to
enerypt and decrypt the entire session (Figuwre 1),

Note that at no time is any additional input required of the user other than what would
be required for a regular telnet session. Additionally, there are no extra requirciments on
the system such as all appeal to a trusted key server or action on the part of some third
party. Finally, the performance is good. Even slower workstations can provide excellent
throughput. While the public key eneryption algorithms slow down the initial connection,
no big primes need to be generated in real time, and the key exchange is only donw once.

Requirements

The client and server are based on the Kerberos ready 4.3 BSD Net2 telnet and
telnetd source code. Sites wishing to build ETN also nced the RSAREF 2.0 library,
which contains the Diflic Hellman code, and the Cygnus Kerberos v.4 1ibdes. a library,
which contains the DES code. Tnstructions on how to obtain these libraries are available
in the K'TN source package. Although not built yet, it is likely that the EFTP (Encrypted
F'J1’) client will e built from Berkeley source and the server will be adapted from the

DIKU ftpd code.

Vulnerabilities

E'TN does not sol ve every problem, nor is it designed to. Unlike Kerberos, ETN docs
not guarantee that the remote host you are talking to is the one you intended. If somcone 1s
able to masquerade as your destination host , they imay be able to convinee vou to disclose
the data youare trying to protect. Also, if theintruder is able to intercept your data
line before the packets reach their intended destination, they may proceed with a “man-
in-the-1niddle” attack, where they accept, a connection from you as your destination and
establish a connection with your true destination. 1'his int ruder can negotiate the protocol
with you, receive your deerypted information, turn around and pass that information on
to the intended destination and return the destination’s data back to you (Figure 2). If
the network latency is bad enough and the intruder has a fast enough machine, you might
not be able to notice that this is happening at al].

ETN Authentication Protocol

Client Server

Make Network Connection
Establish Network Connection

=

< Accept Network Connection

Do Public Key Exchange Protocol
Send Key Exchange Protocol

—

= Concurrence of Key Exchange Protocol

=

Send DH Prime and Generator

. Generate Public and Private Keys .
Send Public Key to Server

=

E Send Public Key to Client

. Calculate Agreed Key .

Public Key Protocol Finished
‘Assign Session Key Schedule .

Session Encryption Keys Established

Telnet session resumes

Figure 1

“Man in the Middle” Attack

Expected Connection ‘ erver
< >

“Man in the Middle”

Client Server

Figure 2

Of course KTN does nothing to attempt to hide traflic analysis information by an
cavesdropper, where knowledge that 4 connection has been made, the 11)$ of the two
machines in communication or the time and duration of the connection is the information
that is sought. Nordoces it' provide any real defense against anyone with permission to
rcad the KTN user’s share of machine mecmory where they could sce the plaintext before
it becomes enerypted or after it is decrypted.

The problem ETN was designed to solve is the problem of] sreventing password network
monitoring from gathering information about about™ the contents of a remote interactive
session. This it does well. If theiare stronger requircients, then some other protocol is
HCCeSSary.

DES and 512 bit Diflic Helhman are consider ed to he strong hut not unbreakable
cryptographic algorithms. For example,in 1993 it was cstim ated that one could build a
machine that could exhaustively scarch through the entire 1)ES key space in 21 minutes
for about $10 million using specially huill hardwarc[6]. In software , al Liest, it would take
hundreds of high powered workstations months of dedicated eracking to exhaustively brink
) Es.

It is believed that the time required to factor t he discrete logarithins generated from
primes of given length, as in Diflic Helliman, is cornparable to t he time it takes to factor
integers based on primes of the same length as in I{ SA[7]. Recently, it took an estimated
6000 MIPS yews to factor the product of two 429 bit RSA primes[8]. Breaking 512 bit
Diflic Hellman would many orders of magnitude more diflicult.

Bascd on these numbers, I think it is safe today that commmnon computer eriminals will
not be able to launch an cffective brute force attack against cither of the eryptographic
algorithins ciployed 1)y TN for at least the next several years. However, organizations
with resources comparable to that of a large corporation or small governiment very possibly
could mount asucc.Oss i 1 brute force eryptographic attack on a recorded K'T'N session, so

one should not transmit information using this protocol that would be worth the cost of
attempting such an attack.

Not counting social engineering methods or having super-user privilege on cither the
client or server machine, it is the author’s opimon that the most effective computational
method to break BTN is to attack the key generation process. Plitry to explain why, by
following the process of attacking the keys backwards frorn an established session.

Given arccording of a complete session from the network, one can recover the plaintext
of the session by knowing (or dcsdermining) a session key that is used. Discovering that
is computationally expensive at best, especially since some of the most promising known
attacks against DES such as Differential Cryptanalysis[9] or Lincar Cryptarialysis[10], are
unlikely to befeasible given the length and nature of 1 he eyphertext that would be available.
of course, one could rosily determine the session key from the data stream and a copy of
the source code, if one knows one of the Diffic Hellinan private keys used in the agreed
key negotiation process. Again, without, this knowledge, it would be computationally
intensive at best, to crack the data stream, requiring the caleulation of a very large disercte
logarithm. However, if one can reproduce the process by which these keys were gencerated,
one doesn’t need to do al this math. Again, the algorithin by which the public and private
keys are generated is well kniown, one call make good guesses as to the case of success by
comparing the public value you generate to the 01 ¢ sent over the network inthe clear,
rather th an by trying to decrypt the session stream and see if’ the results are sensical.
These keys are generated by a deterministic process from a dat a structure act ing as a sced
consisting of 16 “random” characters with, presumably, 8 bits of randommess in cach. By
brute force, this is cven harder to determine then the DES session keys, but they have
to be filled somchow. They are filled using the standard UNIX{ 1rand48 (3) library roll,
which produces random cnough values over ascquence of 1 G calls, but remember that
this routine is sceded by a single nunber of type long, which has only about 4.29 billion
possible values.

Unfortunately, that’s not the end of the problemn. A cthod is needed to generate
this initial sced such that it cannot be guessed by an observer . This is a more difficult
task. To make this as sccure as possible, there must be some pretiy severe const raints on
the process by which this munber is generated.

1. The distribution of’ the nunbers ought to span the total range of
4.29 billion possible values.
3. The distribution of numbers ought to he fairly even t hroughout the range

of possible values.

3. The number produced should not he guessable by somcone observing the
SESSiON 11 progress,

4. nor Should thespace of values be mcasurably reduced by the process
of ohscrvation.

5. The method should be portable to other operating systems and be equally
sceure 011 them.
6. The method should not require extra software or privileged instructions.

T As of this writing, the UNIX trademark is owned by X/Open.

7. The method should be fast and require no extra effort on the part of
the user.

This is a tall order. We could adopt the method used by 1'C;I'[11] and require the user
to type in some amount of text and use the time gaps 1 retween key strokes as a sour-ce
of random information. This would satisfy all butthe last criterion, and so it is rejected.
We could request a lot of quasi-random information from the system (elapsed uptime,
number of free bytes onthe “/” disk, a hash of /etc/motd, the number of files in /tmp,
the number of frec inodes on the partition with the user’s home directory, de.) and hash
it by some algorithm to produce a proper sced, but it is unlikely to be portable, may be
time consuming and much of the information may be obtainable by another user on one
of the machines involved in the connection.

It was decided that time values returned froimn the system clock (especially the mi-
crosccond times) at several points in the code would be used along with the process’ PII).
These would be combined in the following algorithn (written ity C code):

seed = ((long) pow(seed[2],pid) + 1000 00*seed [O] + seed[3] - seed[1]) % MAXLONG;

where seed [O], seed [I] and seed [2] arcmicrosccond resolution return values and
seed [3] is a sccond resolution return value from gettimeof day (3). MAX LONG is the max-
imal valuc of a long and pid is the return value from getpid (3).

This expression spans the desired range of long, is rcasonably well distributed, is
portable and requires no intervention on the part of the user. The pid and seed [3] valucs
can be known and guessed at, respectively, by a knowledgeable 01 hserver, but that does not
provide cnough information to be able to narrow the scope of the scarch by a significant
amount.

Unfortunately, the three calls to gettimeofday (3) all occurin a relatively small see-
tion of code, to keep it modular. Hopefully, one will not be able to correlate the microsecond
valucs well enough to be able to significantly reduce the sceurity of this sced generation
process. There may be reason to be concerned on faster machines, as a significant frac-
tion of a sccond may not have clapsed between cach successive call to get t imeof day (3).
Certainly, a thorough security analysis of this algoritlim onscver a diflerent hardware plat-
forms would be very useful. Fortunately, if it proves to beinsccure, the method desceribed
above can be replaced with a better one without afleeting t he protocol at all,

Still, it appears{o me that attacking the key generation process is currently the most
fruitful line of attack against E'TN at this time.

Performance

The initialization is rcasonably fast. 1 clock the time from carriage returntologin
prompt on an older, heavily loaded Sun SI" A RC Station to e about 20 to 25 scconds,
comparcd to about 5 scconds for an unencrypted telnet session. The reason that the start
up time is so small is that the time consuming part of public key eneryption, the genceration
of primes, doces not have to be done in real time. 1'he Diftic Helliman algorithin is secure
cven with the prime and generator known to the world. Therefore, they are sent over t 11(°
ncetwork by the client in the clear, rather than computed anew cach time. The values used
arc the 512 bit Diflic Hell man prime and generator found in the dhdemo source cod ¢ from
the R SAREF package itself. If one wanted to compute Diflic Helliman keys cach time or

wished to use RSA to negotiate the session key, one could expect 1o add about two minutes
to the connection time the same machine for 512 bhit keys.

The throughput is very good. 011 the same machine, cat-ing a large file (640 KBytes)
took 81 seconds over an ETN link to itself’, as opposed to 45 seconds in an open Xtermi
window.] helieve the throughput will he more than accept able for most users.

Standards

The standard avail able to the Internet communi ty regarding telnet authentication and
cneryption is RFC 1416. There are RFCs on the specific authentication mechanisms of
Kerberos and SPX. There is also a draft RFC on Simple-Strong Authentication (SSA) for
telnet, using X.51 1 as a basis. None of these were particularly applicable to the problems
E'TN was designed to solve, although SSA cones close.

E'TN does not conform to the RFC 1416 specification. Here are the reasons why this
decision was made: One of the primary uses to which Texpeet TN to be put is not as
a replacement for teluet, but as a supplementary service to bhe used only when teluet or
rlogin arc not sccure enough. For example, branch oflices of a company connected by the
Internet might use rlogin within their local networks and TN to comneet to machines
at other offices. Many sites may wish to do router filtering based on the security of the
service, allowing TN through a firewall or gateway while disallowing telnet. Therefore,
do not expect etnd to replace telnetd on any machine. The 131 Cs provide for fallback to
non-cnerypted modes when one side is not able or willing, to do anthentication. | do not
want this to ever happen. Users of ETN should know that unless they specifically turn
it off’ (andiaybe this option should noteven be presented,) their session is sccure. If it
cannot be made secure, it will not be made at al. Furtherinore, if one replaces t elnet wit h
ETN, there comes the question of now one would niandate an encrypted connection from
some hosts while allowing unencrypted telnet sessions from ot hers. With ETN and telnet
operating on different port numbers (and providing parallel s(m’ice) this is easy to do with
cither router filtering or a package like Wictse Venema’s T'CP Wrapper|l 2]. Thercfore, it
is my belief that ETN should be considered to be a network service that functions like
telnet but is not telet, and therefore the R FCs on telnet are not applicable.

There may come a day when it no longer makes sense for there to be anon-RFC 1416
compliant communications mechanism like this. W] ien that day comes, K'T'N should cither
be modified to play a new role or abandoned in favor of another system. Alternatively, it
may be best that the future of the Internet standards be broadened to include K'TN as it
stands now. This decision is for others to make.

In my distribution package, | recommend the “standard” use of network port 1006/t cp
for ETN. I also suggest the port 1006/tcp be reserved for EFTP when it becomes available.
These ports have 1ot yet been assigned TANA | the Internet A ssigned Nuinbers Authority,
and conscquently people who install this package should be willing to change them if it is
decided that these port nunbers should be changed.

Security Enhancements

There are a 11111111 »er of changes that could ben lade thatimay make BTN more sccure.
One is, easily cnough, expanding the protocol to use 1024 15t Diffic Hellmman for key
exchange, and using triple DIS or perhaps IFEA for the session encryption. Another
possibility, although it is “sccurity-through-obscwity” is to ¢hizmge the default function

11s((1 toscedihic randomnumber generator at compile timne. I it is not possible to discover
this from the binaries (or they arc installed unrcadable) then one cannot eflect the sort
of attack described in the Vulnerabilitics seetion of this Paper. A change of this sort
docsn 't aflect the interoperability of ETN at all. Also, onccould have the client and
scrver cach be built with the samnce static Diflic Helhiman prime and generator and not
have it communicated over the network. It could be hard coded into the binaries, or read
from a protected systemn file. Note that making this change would render the programs
incompatible with versions that did not know about this, 1 >ut it would also speed the
startup time of TN by several scconds. While hiding the prime and generator can buy
you some additional security, one should not be too concerned if t hey are discovered. This
is no worse than the default behavior of FTN.

To Do

There are many things yet to be added to KTN. Here are some enhancements that
can be expected in the future.

First, KTN’s counterpart, KFTP nceds to be built. The Diflic Helliman session key
negotiation part is modularized in a library and can be added to ftp and ftpd code very
casily. Also, the session eneryption process is likely to be much simmpler than for telnet, as
FTP operates a line at a time rather than character at a time.

Scecond, 1 would like to sce more available kinds of session key establishiment algo-
rithms, perhaps using RSA or LUC as well as Diffic Hellman with different prime lengths.
Note that using cither RSA or LUC for session key exchange would add considerably to
the tiime BTN would require 1o initialize, as primes would have to be generated at run
time.

Third, the random structure sceding process definitely needs to be enhanced. T hope
to solicit more input on making the sced values cven less determinable. Perhaps new
randomizing functions need to be written. One possible idea is to have an optional dacimon
running on a system that precomputes several sets of Diflic Hellman or RSA parameters
and passes them to the etn or etnd programs on demand. This dacimon could be used by
other processes as well. It would be harder to determine the circumstances under which
these paramcters were generated as well as allowing for the various parts of the sceds to
be generated at different times. Also, this would allow for fast immplementation of a key
exchange using RSA since the computationally expensive processes would have been done
long before the exchange takes place.

The event that 1 think would improve TN most is for some other organization (or
organizations) to do an independent evaluation of the sccurity of the protocol to insure
that it has no major weaknesses. 1t would be unfortunate if some fatal flaw in its function
were discovered at a time when it would be diffienlt for sites who use ETN to upgrade
their versions, especially when flaws could probably be fixed fairly painlessly. 1T would be
more than happy to assist any organization who wishes to perform such an evaluation.
Availability

Because of the U.S. export restrictions regardinig eryptography, 1 regret to say that 1
cannot make this package available to people who are not citizens or permanent residents
of the United States or Canada, and I canmot ship this code outside of U.S. and Canadian
borders. At this time, | am looking for assistance from some well known anouymous

FTP site in the United States that alrcady has a mechanism in place for distributing
code containing restricted encryption who would be willing to house this package and its
updates. If your site is interested in assisting in this manner, please contact the author. The
redistribution of this package is governed by the copyrights of the individual components,
the most limiting of which is the one covering the use of RSARER. In a nut shell, it says
that the KTN package must be distributed with its sourer code and it cannot be used
for revenue generating purposes. Please read the RSAREF license agrecment for furt her
information.

At this time, ETN has been ported to SunOS 4.1.X and HP-UX 9. 0X. Ports to Solaris
2.X and IRIX 5.X arc in progress. The author is very initerested in working with other
individuals on ports to other platforms.

Conclusion

In a time where network sniffers are commmonly used by crackers onour networks, our
nCtwork users deserve an easy to use, high performance protocol to allow thein to access
remote scrvices without fear of compromise, and our system adininistrators deserve a way
to provide these services to their users that require minimal maintenance. 1 believe that
E'TN provides this service and hope that others will find itto 1)(of some henefit.

Acknowledgments

Many people deserve a world of credit for this hackage. First, the telnet itself is from
the BSD 4.3 Net2 distribution. The RSAREF library has been made available by RSA
DataSccurity Inc.. The DES library | used for development comes from Cygnus Support,
throughi the Free Software Foundation. This is the cminent history that this work is based
o1.

R. Brent Mead and the Institutional Computing and Information Services at the Jet
Propulsion Laboratory provided the funding and impetus for this work.

My work started where Seth Robertson of Columbia University left off, porting the
BSD Net 2 code to SunOS and linking in the DES libraries. During the carly part of
the developim ent, a lot of work was done by Jefl Dickson of JPL hiclping me get t he code
cleaned up and (10 the preliminary work. Jim Larson of the University of Oregon helped
with lots of good advice and one exhaustive hacking session to figure out where to break
t elnet and t elnet d to add the Public ey stuff. Most of al, Peter Scott of JPL, descrves
more than aworld of credit for histremendous assist ance inthelatter stages. His expertise
saved me many weeks of extra work in getting various parts to execute properly. He should
get eredit for most all of the pretty code that was added, and, of course, | readily accept
all blame forthe 11101¢ brutalhacks.

The work described in this paper was perfornied at the Jet Propulsion Laboratory,
California Institute of Technology, under contract wit h the National Aeronautics and Space
Administration.

Bibliography

(1] W. Diflic and M.E. Hellman. “New Directions in Cryptography” IEEE Transactions
on Information Theory, 1T-22:644- 654, 1976.

[2]
[3]
[4]

[5]

[6]

(8]
[9

CERT Advisory, CA-94:01, available as: f tp: //ftp. cert. erg/pub/
cert.advisories/CA-94:01.ongoing.network monitoring. attacks.

N.M. Haller, “The S/Key One-time Password System” Available via anonymous FTP
as: ftp://thumper .bellcore.com/pub/nmh/dots/ISOC .symp.ps.

S.1'. Miller, B.C.Ncuman, J.I. Schiller, and J.H. Saltzer. “Kerberos Authentication
and Authorization System”, Project Athena Technieal Plan, Sceetion E.2.1, December
21,1987.

D.R. Saflord, D.K. Hess, DD.1.. Schales, “Sccure RPC Authentication (SR A) for TEL-
NET and ¥TP”, Proceedings of the Fourth UNIX Sccurity Symposium, 1993,

M.J. Wicner, “Efficient DES Key Scarch” Lecture Notes in Computer Science: Ad-
vances in Cryptology Crypto’93 Proceedings. Springer-Verlag, 1994,

I'. FalmAnswers to Freqeuntly Asked Questions About Today’s Cryptography”,
Available via anonymous FTT as: ftp://www.rsa.com/pub/faq/faq.asc.

1). Atkins, “RRS - 129”7, Posting to the Usenct newsgroup sci . crypt on April 26, 1994.
E. Biham and A. Shamir, Diflerentia l Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 19133,

M. Matsui, “Lincar Cryptanalysis Mcthod for DES Cipher”™, Lecture Notes in Com-
pt1 ter Science, Advances in Cryptology FEurocrypt '93 Procecedings, Springer- Verlag,
1994.

P. Zimmmnerman, “Pretty Good Privacy”, Documentation available as part of the PGT
Version 2.6.2 software package, Sce ftp://net-dist.mit.edu/pub/PGP/README for
instructions on how to obtain this package. 1, ast updated October 11,1994,

W. Venema, “TCP WRAPPER: Network Monitoring, Access Control, and Booby
Traps”, Proceedings of the Third UNIX Sccurity Symposium, 1992.

